COMTRAXX® CP305 - Control Panel

Système de contrôle et de report d'alarme pour le domaine médical et d'autres domaines

COMTRAXX® CP305 - Control Panel

Système de contrôle et de report d'alarme pour le domaine médical et d'autres domaines

Normes et homologations

Conditions normales d'utilisation

Le système de contrôle et de report d'alarme COMTRAXX® CP305 sert à la signalisation visuelle et sonore des messages de fonctionnement et d'alarme provenant des systèmes Bender MEDICS®, ATICS®, EDS et RCMS. Dans les systèmes de surveillance MEDICS®, le CP305 satisfait aux exigences de la norme DIN VDE 0100-710 concernant les fonctions de contrôle pour la surveillance du réseau IT et les messages provenant des dispositifs de commutation. Le contrôle des dispositifs de surveillance du réseau IT s'effectue via le bouton de test et les appareils à tester.

Fonctions d'affichage importantes

- · Affichage Fonctionnement normal
- · Défaut d'isolement
- Surcharge
- Surchauffe
- Coupure du raccordement au réseau ou au conducteur de protection ISOMETER®
- Défaillance d'une ligne d'alimentation
- États de défaillance de l'alimentation et défauts du dispositif de commutation
- Panne de l'appareil
- Résultats de test
- Valeurs mesurées

La connexion entre les CP305 ainsi qu'entre les module de commutation et de surveillance est effectuée via la technologie de bus. En état de fonctionnement normal, le CP305 indique que le système est prêt à fonctionner.

Le CP305 comprend 12 entrées numériques, qui permettent de détecter des messages provenant d'autres systèmes tels que gaz médicaux ou de systèmes d'alimentation électrique centralisée sur batterie (installations à batterie centrale) et de les afficher sur le CP305.

2 contacts de relais permettent de transmettre des messages au système de gestion technique de bâtiment (GTB) supérieur. Les contacts de relais peuvent également être utilisés comme interrupteurs commandés via l'écran.

Les CP305 sont utilisés dans les

- établissements médicaux,
- les bâtiments industriels et administratifs
- et les bâtiments publics

Veuillez tenir compte des valeurs limites du domaine d'application indiquées dans les caractéristiques techniques.

La commande et le paramétrage s'effectuent en partie directement sur l'appareil ou dans un navigateur web.

Toute autre utilisation du système ou toute utilisation dépassant ce cadre est considérée comme non conforme à nos prescriptions.

Une utilisation conforme aux prescriptions suppose également :

- des paramétrages spécifiques à l'installation conformément aux conditions d'installation et d'utilisation présentes sur site
- la prise en compte de toutes les informations données dans le manuel d'exploitation
- le respect des intervalles de contrôle périodique

Applications

- Visualisation sur l'écran adaptée de manière optimale à l'utilisateur
- Intégration de tous les produits Bender compatibles (systèmes MEDICS®, ATICS®, EDS, Linetraxx® RCMS et ISOMETER®)
- Instructions d'action individuelles en cas d'alarme

Caractéristiques de l'appareil

Caractéristiques

Le CP305 affiche sur l'écran les messages de tous les participants au bus RS-485 qui lui ont été attribués via des adresses d'alarme. Cela permet d'utiliser un CP305 non seulement comme affichage individuel, mais aussi plusieurs CP305 dans différentes pièces comme affichage parallèle.

Les couleurs d'alarme pour la LED sont paramétrables (p. ex. rouge pour une alarme, jaune pour un avertissement tel qu'un défaut d'isolement ou autre).

En cas de message, il y a en plus de la LED un popup d'alarme (écran) ainsi qu'une entrée dans l'aperçu des alarmes (interface utilisateur web). Un signal sonore également paramétrable retentit (acquittable/sourdine).

Si un autre message survient pendant un message existant, le signal sonore retentit à nouveau et les messages s'affichent en alternance sur l'écran. De plus, l'adresse de l'appareil qui a déclenché l'alarme peut être affichée. Le signal sonore est répété après un temps réglable (la répétition peut être désactivée).

Le système de menus permet d'accéder aux paramètres internes de l'appareil (adresses d'alarme, adresses de test...). Des textes d'information individuels peuvent être paramétrés pour chaque adresse d'alarme et de test. Le CP305 peut être utilisé comme maître dans des installations comportant plusieurs systèmes IT et FDS

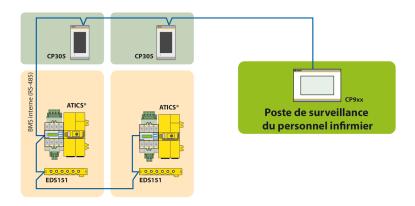
Le bouton "TEST" permet de vérifier le fonctionnement des appareils affectés tels que les contrôleurs d'isolement, les LIM (Line Isolation Monitors) ou GFCI (Ground Fault Circuit Interrupters). La notification n'est effectuée que sur le CP305 sur lequel le test a été lancé. Le test et ses évaluations individuelles se déroulent de manière séquentielle. Enfin, un message indiquant que le test a été effectué avec succès ou un message d'erreur est émis.

Dans les réseaux de bus (BMS) comportant plus d'un appareil compatible avec le maître, un CP305 peut servir de maître de substitution pour maintenir la fonctionnalité de la communication par bus.

Les CP305 présentent les caractéristiques suivantes

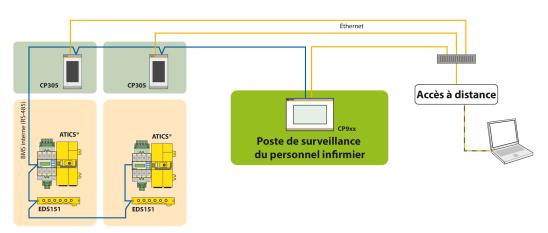
- Affichage des messages de fonctionnement, d'avertissement et d'alarme selon les normes DIN VDE 0100-710, IEC 60364-7-710 et autres
- 12 entrées numériques
- 2 contacts de relais (inverseurs) pouvant également être commandés par commutateur sur l'écran
- Affichage en texte clair avec écran tactile rétroéclairé 5"
- Facile à nettoyer et à désinfecter, indice de protection IP54 (appareil complet) ou IP66 (vitre avant)
- Face avant montée sans vis
- Système de surveillance convivial, sensible au toucher, pour les domaines médicaux et autres applications
- Guidage de l'utilisateur particulièrement simple
- Informations supplémentaires pour le personnel médical et technique
- Notification visuelle et sonore en cas d'alarme
- Structure de menu claire
- Silencieux grâce à un fonctionnement sans ventilateur
- Affichage de haute qualité avec un excellent contraste, haute résolution et large angle de vue
- Contrôles des appareils ainsi que modifications du paramétrage avec un minimum d'interruptions de service
- Textes standard pour les messages sélectionnables dans la langue du pays
- 2 langues réglables pouvant être commutées en cours de fonctionnement
- 500 textes de messages librement programmables
- Technologie de bus pour une installation facile et une faible charge d'incendie
- Alarme acoustique avec possibilité d'acquittement/de mise en sourdine
- Version pour montage encastré ou en saillie
- Mise en service simple grâce à des textes de message prédéfinis
- Mémoire historique avec horloge en temps réel pour le stockage de 1000 messages d'avertissement et d'alarme
- Alimentation en tension via bloc d'alimentation
- Paramétrage via interface Ethernet
- Remplace MK2430 (Rétrofit); autres appareils sur demande

Description du système


Certifications

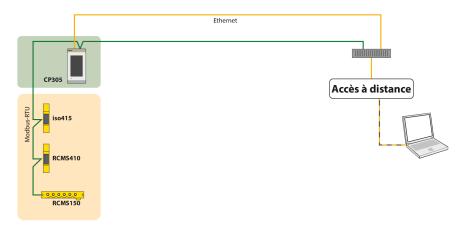
Les COMTRAXX® CP305 sont certifiés UL.

MEDICS®

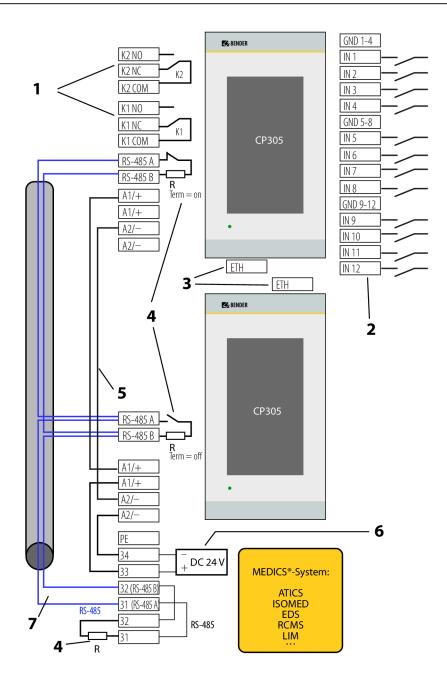

Les systèmes de contrôle et de report d'alarme CP305 font partie du système MEDICS®. MEDICS® est un système intelligent pour une alimentation électrique sûre dans les locaux à usage médical.

Exemple de branchement BMS

Dans l'exemple, l'unité de soins intensifs est surveillée par bus BMS depuis le poste de contrôle infirmier.


Exemple de branchement BMS et Ethernet

Dans l'exemple, l'unité de soins intensifs peut être surveillée depuis le poste de contrôle infirmier. De plus, une télémaintenance est possible via la domotique ou par Bender.


Exemple de branchement Modbus-RTU et Ethernet

Dans l'exemple, une télémaintenance est possible via la domotique ou par Bender.

Schéma de branchement

Légende du schéma de branchement

No.	Borne	Explication
1	KCOM KNC KNO	2 Sorties relais Contact programmable pour défaut interne, test des appareils assignés**, défaillance de l'appareil et messages d'alarme groupés.
2	IN112 GND	Entrées numériques Les entrées numériques se répartissent en trois groupes de quatre, séparés galvaniquement les uns des autres et de l'appareil. Chaque groupe a sa propre borne GND pour le potentiel de référence. Si les entrées sont commandées par une tension externe, le potentiel de référence commun est appliqué à la borne « GND » et le signal est appliqué à l'entrée respective IN1…12.
3	ЕТН	Interface Ethernet pour le raccordement d'un PC L'interface Ethernet permet d'intégrer le CP305 dans le réseau Bender/hôpital. Le PC permet de paramétrer et de lire les données et la mémoire de l'historique. Les appareils de mesure connectés peuvent être affichés avec leurs canaux.
4	R	Résistance de terminaison RS-485 Lorsque plusieurs appareils sont reliés sont via l'interface RS-485, il faut que le bus soit terminé à ses deux extrémités par une résistance de $(R = 120 \Omega)$ (pour le CP305 activable via le commutateur Dip sur la face inférieure).
5	A1+/A2- ≂	Tension d'alimentation (courant continu et alternatif) Lors de l'alimentation des CP305 dans les modules MEDICS®, respectez les longueurs et sections de câble autorisées.
6	AC/DC 24 V ≂	Bloc d'alimentation (courant continu et alternatif) dans le module MEDICS®, suffisant pour l'alimentation de deux CP305 au maximum.
7	RS-485 A RS-485 B	Raccordement bus BMS (consulter également le manuel D00276) ou Raccordement Modbus-RTU Câble: blindé, blindage d'un seul côté sur PE recommandé CAT6/CAT7 min. AWG23 alternative Câbles torsadés par paire, J-Y(St)Y min. 2 x 0,8 Raccorder le blindage d'un côté à PE Différents appareils Bender avec bus BMS peuvent être raccordés au bus BMS. Exemples: ATICS, ISO-MED427P, EDS151, RCMS, CP9xx, Différents appareils Bender avec bus Modbus-RTU peuvent être raccordés au Modbus-RTU. Exemples: iso415, RCMS410,

^{**} Appareils sans raccordement au bus BMS, mais avec entrée de test (par ex. ISOMETER®)

Caractéristiques techniques

Coordination de l'isolement selon IEC 60664-1

Tension assignée	50 V
Catégorie de surtension	II
Degré de pollution	2

La catégorie de surtension II et le degré de pollution 2 se rapportent aux contacts des relais. La suite de la coordination de l'isolement se fait après séparation fonctionnelle.

Alimentation via bornes à fiches (A1/+, A2/-)

Tension nominale	AC/DC 24 V
Plage de fonctionnement de la tension d'alimentation	AC 1828 V / DC 1830 V
Fréquence nominale	50/60 Hz
Puissance absorbée typique	< 4,2 W
Longueur maximale du câble en cas d'alimentation via B95061210	
(24 V DC-Bloc d'alimentation 1,75 A)	
0,28 mm ²	75 m
0,5 mm ²	130 m
0,75 mm ²	200 m
1,5 mm ²	400 m
2,5 mm ²	650 m

Durée d'autonomie en cas de panne d'alimentation

Heure, date	2 jours minimum
Redémarrage après coupure de tension	2 secondes minimum

Affichage, mémoire

Affichage	Écran tactile TFT 5" (720 x 1280 px)
Appareils pouvants être représentés	90
Adresses d'alarme	500
Adresses de test	50
Nombre d'entrées dans l'historique	1000

Interfaces

Ethernet

Raccordement	RJ45
Vitesse de transmission	10/100 Mbit/s, autodétection
DHCP	Marche/arrêt (marche)*
Adresse IP (connexion 1:1)	169.254.xx.yy (avec xx et yy individuel par appareil)
Masque sous-réseau	nnn.nnn.nnn (255.255.255.0)*
Protocoles	TCP/IP, Modbus TCP, DHCP, SNTP

Ethernet

Protocole Mc	odbus TCP
(uniquement pour l'interrogation des entrées numériques et des sorties	s de relais)
Mode de fonctionnement	Esclave

RS-485

Protocole	BMS interne
Mode de fonctionnement	Maître/esclave (maître)*
Vitesse de transmission	9,6 kBit/s
Longueur du câble	< 1200 m
Câble blindé, blindage sur PE	Recommandé : CAT6/CAT7 min. AWG23
	alternative : J-Y(St)Y min. 2 x 0,8
Séparation galvanique	oui
Raccordement	"RS-485 A", "RS-485 B" (voir borne enfichable)
Résistance de terminaison	120 Ω (0,25 W), connectable en interne
Adresse des appareils	190 (1)*

RS-485

RS-485	
Protocole	Modbus-RTU
Mode de fonctionnement	Maître
Vitesse de transmission	38,4 kBit/s
Parité	Paire, impair, aucune (paire)*
Bits d'arrêt	1, 2, auto (1)*
Alarme Intervalle d'interrogation	030 s (2 s)*
Longueur du câble	< 1200 m
Câble blindé, blindage sur PE	Recommandé : CAT6/CAT7 min. AWG23
	alternative : J-Y(St)Y min. 2 x 0,8
Séparation galvanique	oui
Raccordement	"RS-485 A", "RS-485 B" (voir borne enfichable)
Résistance de terminaison	120 Ω (0,25 W), connectable en interne
Adresse des appareils	1

Entrées numériques (1...12)

Nombre	12
Séparation galvanique	Par groupe de 4
	IN 14 / GND 1-4
	IN 58 / GND 5-8
	IN 912 / GND 9-12
Mode de travail	Sélectionnable pour chaque entrée :
	actif High ou actif Low
Réglage d'usine	Arrêt
Domaine de tension (fort)	AC/DC 1030 V
	Nominal : 24 V
Domaine de tension (faible)	AC/DC 02 V
Max. Courant maximum par canal (pour	8 mA
AC/DC 30 V)	
Raccordement	Bornes enfichables
	IN 14 / GND1-4
	IN 58 / GND 5-8
	IN 912 / GND 9-12
Longueur maximale du câble	< 500 m

Eléments de commutation

Raccordement	Borne enfichable
	K1 NC; K1 NO; K1 COM
	K2 NC; K2 NO; K2 COM
Nombre d'inverseurs	2
Mode de travail (inverseur)	Courant de repos (N/C)/Courant de
wode de travair (inverseur)	travail (N/O)
Fonction	Programmable
Charge minimale de contact	100 mA/DC 5 V (0,5 W)
Durée de vie électrique sous des	10.000 manoeuvres
conditions assignées de fonctionnement	10.000 manoeuvies

Caractéristiques des contacts selon IEC 60947-5-1

Catégorie d'utilisation	AC-13 / AC-14 / DC-12
Tension assignée de fonctionnement	AC 24 V / AC 24 V / DC 24 V
Courant assigné de fonctionnement	AC 2 A / AC 2 A / DC 2 A

Buzzer

Acquittable, sonne de nouveau à
l'apparition d'une nouvelle alarme, peut
être mis en sourdine
Réglable
Réglable
Réglable

Mode de raccordement

Bornes enfichables (A1/+, A2/-)

Taille des conducteurs	AWG 2412
Longueur de dénudage	10 mm
Rigide/souple	0,22,5 mm ²
Souple avec embout sans/avec collet en	0,252,5 mm ²
matière plastique	
Multifilaire souple avec embout TWIN	0,51,5 mm ²
avec collet en matière plastique	

Bornes enfichables

(RS-485 A, RS-485 B), (IN1...4, GND1...4, IN9...12, GND9...12) (IN5...8, GND5...8, K1..., K2...)

Taille des conducteurs	AWG 2416
Longueur de dénudage	10 mm
Rigide/souple	0,21,5 mm ²
Souple avec embout sans collet en matière plastique	0,21,5 mm ²
Souple avec embout avec collet en matière plastique	0,21,5 mm ²

Pour les applications UL

Utiliser uniquement des conducteurs en cuivre.	
Plage de température minimale du câble à raccorder aux bornes	
enfichables	/3 C

Environnement/CEM

CEM	IEC 61000-6-2:2016-08 Ed. 3.0
	IEC 61000-6-3:2020-07 Ed. 3.0
	IEC 61326-1:2020-10 Ed. 3.0
	DIN EN 61326-1:2020-10 Ed. 3.0
	DIN EN 61326-1:2013-07
	DIN EN 50364:2019-05
	EN 300 330 V2.1.1
	ETSI EN 301 489-3 V2.3.0
Température de fonctionnement	-10+55 °C
Température de fonctionnement pour l	es applications UL -10+50 °C
Altitude	≤ 2000 m au-dessus du niveau de la mer
Humidité relative	≤ 98% pour 25 °C

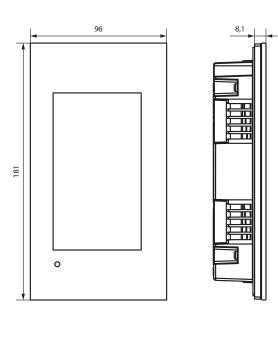
Classes climatiques selon IEC 60721

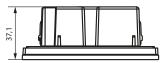
Utilisation à poste fixe (IEC 60721-3-3)	3K22
Transport (IEC 60721-3-2)	2K11
Stockage longue durée Einsatz (IEC 60721-3-1)	1K22

Sollicitation mécanique selon IEC 60721

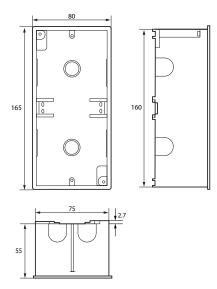
Utilisation à poste fixe (IEC 60721-3-3)	3M11
Transport (IEC 60721-3-2)	2M4
Stockage longue durée Einsatz (IEC 60721-3-1)	1M12

Caractéristiques générales

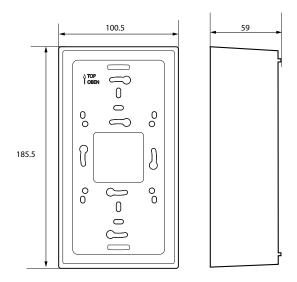

Mode de fonctionnement	Permanent
Sens de montage	En fonction de l'écran LCD,
	orientation de l'écran réglable
	horizontalement/verticalement
Indice de protection vitre frontale	IP66
Indice de protection face avant pour les applicati	ions UL IP50
Indice de protection Boîtier	IP20
Indice de protection monté à fleur du mur	IP54
Classe d'inflammabilité	UL 94V-0
Dimensions (L x P x H)	181 x 96 x 37,1 mm
Poids	< 420 g


()* = réglage par défaut

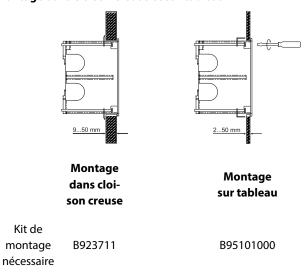
Encombrement CP305


Dimensions en mm.

Encombrement du boîtier encastrable


Dimensions en mm.

Montage en saillie


Pour ce type de montage, il faut utiliser le boîtier pour montage en saillie correspondant (Réf. B95100153).

Dimensions en mm.

Les écarts entre le boîtier saillie et le mur doivent être compensés par des rondelles. Ne jamais serrer les vis avec une visseuse sans fil, mais uniquement à la main. Si vous ne respectez pas cette consigne, le boîtier saillie risque de se déformer.

Montage dans cloison creuse et sur tableau

Références

Appareil

Туре	Désignation	Réf.
CP305-IO		B95100051
CP305-C	Paramétrage spécifique au client	B22030051

Accessoires

Туре	Désignation	Réf.
Boîtier encastrable		B923710
Kit de montage pour cloison creuse pour boîtier encastrable B923710	Kit de montage pour cloison creuse	B923711
Kit de connecteurs CP305-IO	CP305-IO Connector Kit	B95100151
Kit adaptateur Ethernet (embase RJ45 femelle, câble patch SLIM Cat.6)	Kit de connexion Ethernet	B95100152
Boîtier pour montage en saillie CP305		B95100153
Kit de montage pour montage sur rails et sur tableau pour boîtier encastrable B923710	Kit de montage CPx05	B95101000
Kit Rétrofit: MK800 vers CP305		BF95100154

Londorfer Straße 65 35305 Grünberg Germany

Tel.: +49 6401 807-0 info@bender.de www.bender.de

© Bender GmbH & Co. KG, Allemagne Sous réserve de modifications! Les normes indiquées tiennent compte de l'édition valable jusqu'au 08.2025 sauf indication contraire.